Cast Iron & Cast Carbon Steel CATALOGUE cum LITERATURE. V V Quality Products. "Quality is the name of the Game"

FIRM PROFILE

In the year 1982, partnership firm under the name and style "VALVES & VALVES INDUSTRIAL CORPORATION" was established. The Managing Partner KAMAL SINGH RANA, prior to the establishment of the partnership firm, had worked for M/s LEADER VALVES Ltd. Formerly M/s LEADER ENGINEERING WORKS, Jalandhar as Quality Control Engineer and Production Engineer from the year 1967-1980.

From 1982 to 1987 our Firm did work for reputed company pioneer in valve industry in India. We have been manufacturing GATE VALVE(S) BOTH RISING & NON-RISING STEM, NRV HORIZONTAL & SWING TYPE only.

In the end of 1987, we started manufacturing valves and marketing the same under our trade mark $\mathbf{V} \ \mathbf{V}^{\text{(B)}}$. Since then, we have been manufacturing and marketing our products in various markets in India. We have reputed customers in the market throughout India. Our high quality products are well received and we are supplying our products to well known dealers in Andhra Pradesh, Delhi, Gujarat, Haryana, Himachal Pradesh, Karnataka, Kerala, Punjab, Rajasthan, Tamil Nadu and our Endeavour has been to manufacture and market best quality products to the complete satisfaction of our customers.

From 1998 the work of the firm was carried on by Kamal Singh Rana as sole proprietor under the name and style "V.V. VALVES INDUSTRIAL CORPORATION, HOSHIARPUR with the same brand name and trade mark $V V^{\text{@}}$. Apart from manufacturing GATE VALVE(S) & NRV, We also manufacture BALL VALVE(S), PULP VALVE(S), STRAINER, GLOBE VALVE, FOOT VALVE(S), ALPHA VALVE(S), AIR VALVE(S) etc in **C.I & C.S Material** and quality of the products is not sacrificed at any cost. The firm is also being managed and looked after by an efficient team led by a promising and enthusiastic engineer Arjun Rana and progressing and expanding its business day by day to the satisfaction of its customers.

INDEX	
Cast Iron Gate Valve Features	4
Gate Valve Flanged Ends Rising Stem Fig. No. 1008-I, 1008-G, 1008-S Dimensions	5-6
Gate Valve Screwed Ends Fig. No. 1011 Dimensions	7
Gate Valve Flanged Ends Non Rising Stem Fig. No. F-54,F-52, F-53 Dimensions	8
Cast Iron Globe Valve & Angle Valve Features	9
C.I Globe Valve Fig. No. 812 Dimensions	10
C.I Globe Stop Cum Non Return Valve Fig. No. 812-S Drawing	11
C.I Needle Valve/Fine Regulating Valve Fig. No. 812-N Drawing	12
C.I Globe Valve with PTFE Disc Fig. No. 812-P Drawing	13
C.I Angle Type Globe Valve Fig. No. 813 Dimensions	14
Check Valve Features, Fig. No. 345, 346 & 347	15-17
Horizontal Lift Check Valve Fig. No. 349-P Sectional View & Dimensions	18
Horizontal Lift Check Valve Fig. No. 348/349 Sectional View & Dimensions	19
Angle Type Lift Check Valve Sectional view & Dimensions	20
Pulp Valve/ Knife Edge Gate Valve Features, Applications, Sectional View & Dimensions	21-22
Ball Valve Features Exploded View, Sectional View & Dimensions	23-24
Foot Valve Flanged End & Screwed End Features, Operation & Applications	25-27
Y-Type Strainer Flanged Ends & Screwed Ends features, Material & Pressure Temperature Rating	28-32
CAST CARBON STEEL VALVES	33
C.S Gate Valve # 150 & # 300	34-36
C.S Swing Check Valve # 150 & # 300	37-39
C.S Globe Valve	40-41
C.S Horizontal Lift Check Valve	42-43

Clip Pattern Gate Valve

V V Gate Valves offer the ultimate independable service wherever minimum pressure drop is important. They serve as efficient stop valves with fluid flow in either direction.

The straight through design offers little resistance to flow and reduces pressure drop to a minimum. Seat actuated by a stem and hand wheel that moves up and down at right angles to the path of flow, and fits against two seat face to shut off flow.

Gate valves are best for services that require infrequent valve operation, and where seat/disc is kept either fully opend or closed. They are not recommended for throttling. With the usual type of gate valve, close flow regulation is impossible.

Velocity of flow against a partly opened disc may cause vibration and chattering and result in damage to the seating surfaces. Also, when throttled, the disc is subjected to severe wire-drawing

erosive effects.

Bronze/G.M- trimmed valves are recommended for steam, water, air and non corrosive oil or gas. All have bronze screwed-in seat rings and the discs are solid bronze in sizes 3" (80 mm) and smaller. In larger sizes, bronze rings are forged into cast iron discs. Handwheels are furnished on all valves. Solid wedge Gate Valve Discs -The strong, simple, single piece design with long disc guides is a

proven performer for all service conditions, particularly suitable for conditions of severe turbulence and stem vibration. Seat and disc surfaces are accurately machined and tapered for shut- off without undue strain.

Gate Valve Non Rising Stem

Threaded End Valves have precision cut threads in accordance with ASME BSP Parallel

$V V^{\mathbb{R}}$ Figure No. 1008-I All Iron Class 125 • Outside Screw & Yoke • Rising Stem • BS: 5150 Features Tapered Solid Wedge Disc. **Body Guide Ribs** STEM 2"-10" Integeral Seats Hex. Nut Stem Provided with ACME Double HAND WHEEL Start HEX, CHECK NUT Packing Graphited Asbestos ٠ SLEEVE (G.M) Gaskets Compressed Asbestos Fibre • Flanges as per ANSI B 16.5 -Gland Bolted Bonnet • Size Range : 1 1/2"- 10" PACKING -BONNET Seating Iron ->Nut & BOLT Stem : M.S -Gasket BODY Wedge Facing Wedge **Dimensions**: Nominal Size T (Thickness) D (Dia.) H (Open) L Appx. inch. inch. inch. inch mm mm mm mm mm $1\frac{1}{2}$ 40 6 ½ 165 5 127 330 9/16 14.3 370 15.9 2 50 7 178 6 152 5/8 2 1/2" 65 $7\frac{1}{2}$ 190 7 178 425 11/16 17.5

80

100

125

150

200

250

8

9

10

10 ½

11 1/2

13

3

4

5

6

8

10

203

229

254

267

292

330

7 1/2

9

10

11

13 1/2

16

190

229

254

279

343

406

455

620

725

770

965

1164

3/4

15/16

15/16

1

1 1/8

1 3/16

19.0

23.8

23.8

25.4

28.6

30.2

Dimensions :

Nomina	ll Size	ize L D (Dia.)		H (Open)	T (Thickness)			
	[дррх.		
inch.	mm	inch.	🔷 mm	inch.	mm	mm	inch	mm
1 1/2	40	6 1/2	165	5	127	330	9/16	14.3
2	50	7	178	6	152	370	5/8	15.9
$2\frac{1}{2}$ "	65	7 1/2	190	7	178	425	11/16	17.5
3	80	8	203	7 1/2	190	455	3/4	19.0
4	100	9	229	9	229	620	15/16	23.8
5	125	10	254	10	254	725	15/16	23.8
6	150	10 ½	267	11	279	770	1	25.4
8	200	11 1/2	292	13 1/2	343	965	1 1/8	28.6
10	250	13	330	16	406	1164	1 3/16	30.2

Nominal Size		Face To	Face L	Height H (Closed) Appx.		
inch	mm	inch	mm	mm		
1 1⁄2"	40	3″ 1/8	81	287		
2"	50	3" 5/8	92	330		
2 ½"	65	5″ 1/8	130	345		
3″	80	5" 5/16	136	400		
4"	100	6" 5/16	159	435		

All Iron/ S.S Trim/ G.M Trim

Inside Screw • Non Rising Stem

Dimensions

Nomina	ll Size	Ι		D (I	Dia.)	H (Open)	T (Thic	kness)
						Appx.		
inch.	mm	inch.	mm 📃	inch.	mm	mm	inch	mm
1 1/4	32	5 5/8	143	5 ¼	133	215	5/8	16
1 1/2	40	5 5/8	143	5 1/4	133	215	5/8	16
2	50	6	152	6	152	245	11/16	17.5
2 ¹ / ₂ "	65	6 ¼	159	6 ½	165	270	11/16	17.5
3	80	<u>6</u> ³ / ₄	172	7 1/4	184	300	3/4	19
4	100	7 1/4	184	8 1/2	216	375	3/4	19
5	125	7 3⁄4	197	10	254	420	3/4	20.5
6	150	8	203	11	279	480	3/4	20.5
7	175	8 3/4	222	10	305	575	7/8	22
8	200	9 1/4	235	13 1/2	337	635	7/8	22
10	250	13	330	16	406	725	1	25.5

CAST Iron Globe and Angle Valve Features

V V globe and angle valves are highly efficient for throttling service because disc and seat designs provide flow characteristics with proportionate relationships between valve lift and flow rate. This assures accurate regulated flow control. The additional advantage of an angle valve is that it provides a 90° turn in piping so fewer joints are required and make-up time and labour are reduced.

Bolted Bonnet is the most common design because there is practically no limitation on size. <u>Multiple bolting</u> permits equalized sealing pressure on the gasket against high pressure encountered in iron globe and angle valve applications.

There are two types of discs supplied in V V globe and angle valves: Metal Disc in most valves is fully guided throughout its travel, minimizing vibration of internal parts and assuring true seating. <u>The disc</u> stem connection is designed to securely hold the disc yet permit swivel action. Disc materials are iron faced with 13% Cr. S.S & iron faced with G.M Metal Plug Disc/ Needle Type is

<u>conically shaped.</u> This design is universally accepted for rigorous service. Because of the wide seating surfaces, it is not easily harmed by foreign matter or wiredrawing. V V uses S.S in this design.

Seats are screwed in and can be reground or replaced whenever necessary.

Stem material is matched to service recommendations for improved operating dependability and life.

Packing Graphited asbestos

Backseating: Rising stem valves are equipped with backseats. It is recommended that the back seat be used as a means for determining the full open valve postion. For normal operation in the open postion, the stem should backed off so

that the back seat is not in contact. This permits the stem packing to assume its intended sealing function and not conceal unsatisfactory stem packing.

In the event of stem packing leakage, the back seat can be used to stop stem leakage until circumstances permit a system shut down and time for packing replacement.

Stem packing replacement with the valve under pressure and backseated represents a hazard and should not be undertaken. The hazard is magnified as fluid pressure or temperature increases or when the fluid is toxic.

Handwheels are furnished on all valves Face-To-Face Dimensions of flanged end valves conform to DIN 2533 PN 16

 $\mathbf{V} \mathbf{V}^{\mathbb{R}}$

C.I Globe Valve

PN 16 • Outside Screw & Yoke • Rising Stem • DIN: 2533

D '	•
1)ime	nsions
	11010110

Nominal Size	L	D (Dia.)	H (Appx.)	T (Thickness)
mm	mm	mm	mm	mm
15	130	95	180	14
20	150	105	180	16
25	160	115	185	16
32	180	140	200	18
40	200	150	250	18
50	230	165	270	20
65	290	185	340	20
80	310	200	380	22
100	350	220	450	24
125	400	250	530	26
150	480	285	600	26

Renewable Seat (PTFE/RUBBER Disc can also made on demand)

15	80	95	165	14
20	95	105	165	16
25	100	115	165	16
32	105	140	195	18
40	115	150	210	18
50	125	165	245	20
65	145	185	270	20
80	155	200	300	22
100	175	220	350	24
125	200	250	385	26
150	225	285	435	26

Cast Iron Check Valve Features

<u>Check Valves permit flow in one</u> <u>direction only and close</u> <u>automatically when flow reverses.</u> They are entirely automatic in action, depending upon pressure and velocity of flow within the line to perform their functions of opening and closing.

Swing Type

The disc and any associated moving parts may be in a constant state of movement if the velocity pressure is not sufficient to hold the disc in a wide open and stable position. Premature wear and noisy operation or vibration can be avoided by selecting the size of the check valve on the basis of flow conditions rather than selecting the check valve according to the size of the pipeline. Sizing check valves on this basis may often result in the use of valves that are smaller than the pipe in which they are used, necessitating the use of reducers for installation. The pressure drop will be no greater than that of a larger valve that is partially open. Valve life will be greatly extended, and the added bonus, of course, is the lower cost of the smaller valves.

Swing Check Valves with straight through body design and wide hinge support provide turbulencefree flow and accurate seating. <u>There is no tendency for seating</u> <u>surfaces to gall or score because</u> the disc meets the flat seat squarely without rubbing. When faster reaction to flow reversal is necessary, certain valves can be equipped with an outside lever and weight. This will assist the disc to close more rapidly and reduce the possibility of surge and shock. Flanged Swing Check Valves conform to ANSI B 16.5 Cl-125 in sizes 1" through 10".

Bronze Trim Valves are for steam, water, non-corrosive oil and gas and other fluids that do not corrode bronze.

<u>All Iron Valves are for gases, oils</u> and other fluids not corrosive to iron.

Swing Check Valve May be Installed in horizontal or vertical pipelines. In vertical lines, or any angle from horizontal, they can be used for upward flow only.

Lift Type

$\mathbf{V} \mathbf{V}^{\mathbb{R}}$ Figure No. 345 **All Iron Swing Check** Valve Class 125 • Bolted Cover • Flanged Ends Features • Design prohibits galling or scoring of seating because the disc meets the flat seat securely on closing with no rubbing action M.S Hinges Replacable M.S Hinge D Pins Large Bolted on cover Flanges as per ANSI B 16.1 CL-125 **Bolted Bonnet** Size Range : 1"- 10" ٠ Packing Graphite Asbestos Gaskets Compressed Asbestos Fiber

Nomina	al Size	I		D (I	Dia.)	H Appx.	T (Thic	kness)
inch.	mm	inch.	mm	inch.	mm	mm	inch	mm
1	25	5 1/4	135	4 ¼	110	90	7/16	13
1 1/4	32	6 3/8	162	4 5/8	122	100	1/2	17
1 1/2	40	6 1/2	165	5	127	100	9/16	14.3
2	50	8	203	6	152	105	5/8	15.9
2 1/2	65	8 1/2	216	7	178	115	11/16	17.5
3	80	9 ½	241	7 1/2	190	130	3/4	19.0
4	100	11 1/2	292	9	229	150	15/16	23.8
5	125	13	330	10	254	185	15/16	23.8
6	150	14	356	11	279	195	1	25.4
8	200	19 1/2	495	13 1/2	343	230	1 1/8	28.6
10	250	24 1/2	622	16	406	300	1 3/16	30.2

Dimensions

	•
Dime	ensions

Nominal Size	L	D (Dia.)	H (Appx.)	T (Thickness)
mm	mm	mm	mm	mm
15	130	95	85	14
20	150	105	85	16
25	160	115	90	16
32	180	140	100	18
40	200	150	120	18
50	230	165	130	20
65	290	185	160	20
80	310	200	170	22
100	350	220	190	24
125	400	250	215	26
150	480	285	240	26

Nominal Siza	Т	D(Dia)	$\mathbf{U}(\mathbf{A}\mathbf{n}\mathbf{n}\mathbf{v})$	T (Thiolmong)
Nommai Size	L	D (Dia.)	п (Аррх.)	I (I IIICKIIESS)
mm	mm	mm	mm	mm
15	130	95	85	14
20	150	105	85	16
25	160	115	90	16
32	180	140	100	18
40	200	150	120	18
50	230	165	130	20
65	290	185	160	20
80	310	200	170	22
100	350	220	190	24
125	400	250	215	26
150	480	285	240	26

$\mathbf{V} \mathbf{V}^{\mathbb{R}}$

C.I Pulp Valve / Knife Edge Gate Valve

Regulating Type Pulp Valve

Features

- Valve Body have ample wall thickness and sturdy built
- Bolted lower plate incorporating CAF gasket for sealing.
- Simple Design with easy replaceable of parts
- Size Range : 2" (50 mm) 20" (500 mm)
- Packing Graphited Asbestos
- Operating handwheel fitted with G.M Sleeve threaded from outside & Inside, wheel fitted with threaded sleeve and for proper fitting check nut is also provided at the top
- ACME Double Start Threading

Typical Applications

- Sewage Plants
- Pulp and Paper Services
- Dry Powder Hopper isolation applications

Page | 22

SECTIONAL VIEW

 $\mathbf{V} \mathbf{V}^{\mathbb{R}}$

C.I Ball Valve

Class 125 • Three Piece Design• Flanged Ends

Features

- <u>Three piece valve itself</u> <u>act as union. The parts</u> <u>which might require</u> <u>servicing can be</u> <u>removed from the valve</u> <u>without disturbing the</u> <u>end connections</u>
- Mirror finish smooth ball
- Full Bore (Excellent flow)
- Quarter turn shut off, blow out proof stem
- No lubrication and maintenance required
- Suitable for temperature upto 170° C
- Suitable for oil, water, air, gas, steam and chemicals
- Size Range : 15 mm 150 mm

Exploded View

SECTIONAL VIEW

Dimensions

Nominal	L	D (Dia.)	Н	T (Thickness)	LL	R	f
Size			(Appx.)	min.	(Appx.)		
mm	mm	mm	mm	mm	mm	mm	mm
15	130	95	60	14.3	135	45	2
20	130	100	66	15.9	155	50	2
25	140	108	68	17.5	155	60	2
32	165	117	105	19.1	165	63	2
40	165	127	105	20.6	190	73	3
50	203	152	120	22.2	190	92	3
65	222	177	127	25.4	285	104	3
80	241	190	140	28.6	285	127	3
100	305	228	152	31.8	325	157	3
125	368	254	220	36.5	610	185	3
150	394	279	224	36.5	610	215	3

V V[®]

C.I Foot Valve

Rubber Seat• Flanged End/ Screwed End

Flanged End Special Features:

Screwed End

- Full Flow Area, equal to pipe size at all points through Valve. Unique seating design, provides positive shut off at all pressure ranges without additional loading on seal.
- Silent operation, by using rubber seat.
- Heavy duty body for long life.
- Size range $1 \frac{1}{2}$ (40 mm) 6" (150 mm).

FOOT VALVE OPERATION: V V Foot Valve are designed to be installed on the suction side of a pump. The purpose of a foot valve is to maintain pump prime between pumping cycles. A strainer prevents debris from entering the piping system. Foot valves are designed to minimize head loss and optimize pumping efficiency.

FOOT VALVE Applications: Municipal Water Treatment, Industrial, Rural Fire Protection, Irrigation

DIMENSIONS									
Nominal Size									
inch	mm	H (Appx.)							
		mm							
1 1/2	40	135							
2	50	135							
2 1/2	65	160							
3	80	190							
4	100	220							
5	125	245							
6	150	270							

MATERIALS								
COMPONENT	MATERIAL							
Body, Seat Plate,	Cast Iron							
Thrust Plate								
Strainer	Cast Iron							
Rubber Washer	Nitrile Rubber							
Bolting	Mild Steel							

Page | **26**

Size Range 1 $\frac{1}{2}$ (40 mm) – 6" (150 mm) V V[®]

 $\mathbf{V} \mathbf{V}^{\mathbb{R}}$

C.I Y- Type Strainer Class 125 • S.S Screen• Flanged Ends/ Screwed Ends

Flanged Ends

Min. Flow Area 85% To 90 %

Screwed Ends

V V pipe line stariners are designed and built to afford dependable long lasting protection to a wide variety of mechanical equipment like pumps, burners, nozzles, pressure reducing valves, traps, meters & Turbines, etc.

SPECIAL FEATURES

"V V" Strainers are in demand for many applications where straining is required, due to the following special design features :-

- i. Arc shaped body that is revolved to ensure minimum blockage, less maintenance & less pressure drop with full flow to fluid.
- ii. Fine finish castings to reduce pressure drop.
- iii. Screens are guided in the body.
- iv. Y-Type strainers may be installed in downward vertical lines with effectiveness equal to horizontal installation.
- v. Bodies require long period for cleaning as it has larger cross sectional area & more height.
- vi. Large ratio between the clear area through the strainer and pipe area to limit pressure drop to minimum.
- vii. A wide variety of corrosion resistance screens, available in a wide range of perforations, provide the answer to straining problems.

MATERIALS:

- ✓ Strainers body and cover are made in following materials:-
- a) Cast Iron (IS 210 Gr. FG 200).
- b) Cast Steel (ASTM A 216 GR. WCB).
- **c)** Stainless Steel (304 & 316).
- ✓ Strainer Screens : There are two types of screens used in strainers:

<u>**Perforated screens:-**</u> These are formed by punching a large number of holes in a flat sheet of the required material using a multiple punch. The perforated sheet is then rolled into a tube and electric welded together for smooth & permanent joint.

Consequently, perforated screens are only suitable for removing general pipe debris.

<u>Mesh screens:-</u> Fine wire is formed into a grid or mesh arrangement. This is then commonly layered over a perforated screen, which acts as a support cage for the mesh.

Screen can either be perforated sheet or wire woven mesh depending on working conditions.

DIMENSIONS:

The main dimensions of these strainers have been tabulated in Table 1. Inlet and Outlet flanges of the flanged valve shall be as follows:-

C.I ----- ANSI B 16.1 CL-125.

C.S ----- ANSI B 16.5 CL-150 (Raised Face).

Flanges conforming to other flange standards can also be supplied against specific requirements. Screwed ends strainers are supplied with female threaded ends as per IS 554/ BS 21.

PRESSURE/ TEMPERATURE RATINGS:

Pressure/ Temperature ratings of strainer confirm the standards mentioned above in dimensions. The strainers are tested to maximum cold non shock Hyd. Pressure of 20 Kg/cm² for C.I and 30 Kg/cm² for Cast Steel.

OVERALL DIMENSIONS OF Y-TYPE STRAINERS(FLANGED ENDS)

Dimensions

Nominal	Flange	Fo Flange	Flang	e Dia.	T (Thickness)	H (Appx.)
Sıze		L	D	Ø	mın.	
	inch	mm	inch	mm	mm	mm
¹ / ₂ " (15 mm)	6 ¹ / ₄	160	3 1/2	89	14	90
³ / ₄ " (20 mm)	6 ¹ / ₄	160	3 7/8	100	14	90
1" (25 mm)	6 ³ / ₄	171	4 1/4	108	15	155
1 ¼" (32 mm)	8 ¹ /4	210	4 5/8	118	17	200
1 ½" (40 mm)	8 ¹ / ₄	210	5	127	17	200
2" (50 mm)	8 3/8	214	6	152	19	220
2 ½" (65 mm)	9 ³ / ₄	247	7	178	19	260
3" (80 mm)	10 1/2	267	7 1/2	190	19	260
4" (100 mm)	15	387	9	228	22	335
5" (125 mm)	16 1/2	420	10	254	24	420
6" (150 mm)	17 3⁄4	450	11	279	27	425

OVERALL DIMENSIONS OF Y-TYPE STRAINERS(SCREWED ENDS)

SIZE	Face To	Height B	
	inch	mm	mm
¹ / ₂ " (15 mm)	3	76	49
³ /4" (20 mm)	3 7/8	98	67
1" (25 mm)	5 3/8	137	80
1 ½" (40 mm)	7 1/4	184	130
2" (50 mm)	8 13/16	224	150
2 ½" (65 mm)	10 3/8	263	205

CAST CARBON STEEL VALVES : NON -IBR

V.V[®] C.S Gate Valves

NON – IBR

V V Gate Valves offer the ultimate independable service wherever minimum pressure drop is important. They serve as efficient stop valves with fluid flow in either direction.

The straight through design offers little resistance to flow and reduces pressure drop to a minimum. Seat actuated by a stem and hand wheel that moves up and down at right angles to the path of flow, and fits against two seat face to shut off flow.

<u>Gate valves are best for services</u> <u>that require infrequent valve</u> <u>operation, and where seat/disc is</u> <u>kept either fully opend or closed.</u> <u>They are not recommended for</u> <u>throttling.</u> With the usual type of gate valve, close flow regulation is impossible. damage to the seating surfaces. Also, when throttled, the disc is subjected to severe wire-drawing erosive effects.

Gate Valve Rising Stem

Velocity of flow against a partly

opened disc may cause vibration and chattering and result in

Handwheels are furnished on all valves.

Solid wedge Gate Valve Discs -The strong, simple, single piece design with long disc guides is a proven performer for all service conditions, particularly suitable for conditions of severe turbulence and stem vibration. Seat and disc surfaces are accurately machined and tapered for shut- off without undue strain.

Class 150 • Outside Screw & Yoke • Rising Stem • BS: 1414/ API 600 • **A-216 Gr. WCB V V**[®]

Features

Double Start

Ring.

Fibre

150 R.F.

Bolted Bonnet

Seating: S.S

Size Range : 1 1/2"- 6"

Stem : S.S AISI 410

Body Guide Ribs

Tapered Solid Wedge Disc.

Stem Provided with ACME

Packing Graphited Asbestos

Gaskets Compressed Asbestos

Flanges as per ANSI B 16.5 CL-

13% Cr. S.S Body Ring & Seat

Figure No. 1013

B.T.P : 425 psig Hyd. S.T.P : 300 psig Hyd.

Dimensions

Nominal Size		L		D (Dia.)		Raised Face		H (Open)	T (Thio	T (Thickness)	
• 1		• 1		• 1		Dia	. a	Аррх.	• 1		
inch.	mm	inch.	mm	inch.	mm	inch.	mm	mm	inch	mm	
$1\frac{1}{2}$	40	6 ¹ / ₂	165	5	127	2 7/8	73	330	9/16	14.3	
2	50	7	178	6	152	3 5/8	92	370	5/8	15.9	
$2^{1/2}$ "	65	7 1/2	190	7	178	4 1/8	105	425	11/16	17.5	
3	80	8	203	7 1/2	190	5	127	455	3/4	19.0	
4	100	9	229	9	229	6 3/16	158	620	15/16	23.8	
5	125	10	254	10	254	7 5/16	186	725	15/16	23.8	
6	150	10 ½	267	11	279	8 1/2	215	770	1	25.4	

- 1. 1/16 inch Raised Face is regularly furnished on CL 150 & CL 300 unless otherwise specified.
- 2. The height of raised face is included in minimum flange thickness for CL 150 & CL 300.

Class 300 • Outside Screw & Yoke • Rising Stem • BS: 1414/ API 600

B.T.P : 1125 psig Hyd. S.T.P : 750 psig Hyd.

	•	•	
-)	imer	1910	nc
		1010	110

Nominal Size		Face TO Face L		DØ(Dia.)		Raised Face Dia. d Ø		T (Thickness)	
inch.	mm	inch.	mm	inch.	mm	inch.	mm	inch	mm
1 1/2	40	7 1/2	190	6 1/8	155	2 7/8	73	13/16	20
2	50	8 ¹ / ₂	216	6 ½	165	3 5/8	92	7/8	22
$2\frac{1}{2}$ "	65	9 ½	241	7 1/2	190	4 1/8	105	1	25.4
3	80	11 1/8	281	8 1/4	210	5	127	1 1/8	28
4	100	12	305	10	254	6 3/16	157	1 1/4	31
5	125	15	381	11	279	7 5/16	185	1 3/8	35
6	150	15 7/8	402	12 ½	317	8 1/2	215	1 7/16	37

Cast Steel Swing Check Valve Features

<u>Check Valves permit flow in one</u> <u>direction only and close</u> <u>automatically when flow reverses.</u> They are entirely automatic in action, depending upon pressure and velocity of flow within the line to perform their functions of opening and closing.

The disc and any associated moving parts may be in a constant state of movement if the velocity pressure is not sufficient to hold the disc in a wide open and stable position. Premature wear and noisy operation or vibration can be avoided by selecting the size of the check valve on the basis of flow conditions rather than selecting the check valve according to the size of the pipeline. Sizing check valves on this basis may often result in the use of valves that are smaller than the pipe in which they are used, necessitating the use of reducers for installation. The pressure drop will be no greater than that of a larger valve that is partially open. Valve life will be greatly extended, and the added bonus, of course, is the lower cost of the smaller valves.

Swing Check Valves with straight through body design and wide hinge support provide turbulencefree flow and accurate seating. <u>There is no tendency for seating</u> <u>surfaces to gall or score because</u> the disc meets the flat seat squarely without rubbing. When faster reaction to flow reversal is necessary, certain valves can be equipped with an outside lever and weight. This will assist the disc to close more rapidly and reduce the possibility of surge and shock.

Flanged Swing Check Valves conform to ANSI B 16.5 CL-150 in sizes 1 ¹/₂" through 8".

Swing Check Valve May be

Installed in horizontal or vertical pipelines. In vertical lines, or any angle from horizontal, they can be used for upward flow only.

Flanged Ends • BS 1868 • A-216 Gr. WCB

Gaskets Compressed
 Asbestos Fiber

Dimensions

Nominal Size		Flange To Flange		Dia. DØ		Raised Face Dia. d Ø		Н Аррх.	T (Thickness)	
inch.	mm	inch.	mm	inch.	mm	inch.	mm	mm	inch	mm
1	25	5 ¼	135	4 ¼	110	2 7/8	73	90	7/16	13
1 1/4	32	6 3/8	162	4 5/8	122	3 5/8	92	100	1/2	17
$1\frac{1}{2}$	40	6 ¹ / ₂	165	5	127	4 1/8	105	100	9/16	14.3
2	50	8	203	6	152	5	127	105	5/8	15.9
2 1/2	65	8 1/2	216	7	178	6 3/16	158	115	11/16	17.5
3	80	9 ¹ / ₂	241	7 1/2	190	7 5/16	186	130	3/4	19.0
4	100	11 1/2	292	9	229	8 1/2	215	150	15/16	23.8
5	125	13	330	10	254	2 7/8	73	185	15/16	23.8
6	150	14	356	11	279	3 5/8	92	195	1	25.4

Page | 38

Class 300 • Bolted Cover • Flanged Ends • BS:1868

Features

- Design prohibits galling or scoring of seating because the disc meets the flat seat securely on closing with no rubbing action
- M.S Hinges
 - Replacable M.S Hinge Pins
 - Large Bolted on cover
- Flanges as per ANSI B 16.1 CL-300
- Bolted Bonnet
- Size Range : 1 ¹/₂"- 6"
- Packing Graphite Asbestos
- Gaskets Compressed
 Asbestos Fiber

Dimensions

Nominal		Flange TO Flange		D 🤄	DØ(Dia.)		Raised Face		T (Thickness)	
Si	ize		L			Dia. d Ø				
inch.	mm	inch.	mm	inch.	mm	inch.	mm	inch	mm	
1 1/2	40	9 ½	241	6 1/8	155	2 7/8	73	13/16	20	
2	50	10 ½	267	6 ½	165	3 5/8	92	7/8	22	
2 1/2	65	11 1/2	292	7 1/2	190	4 1/8	105	1	25.4	
3	80	12 1/2	317	8 1/4	210	5	127	1 1/8	28	
4	100	14"	355	10	254	6 3/16	157	1 1/4	31	
5	125	15 ³ ⁄4	403	11	279	7 5/16	185	1 3/8	35	
6	150	17 ½	444	12 1/2	317	8 1/2	215	1 7/16	37	

CAST Steel Globe Valve

DIN 2401

V V globe and angle valves are highly efficient for throttling service because disc and seat designs provide flow characteristics with proportionate relationships between valve lift and flow rate. This assures accurate regulated flow control.

Bolted Bonnet is the most common design because there is practically no limitation on size. <u>Multiple bolting</u> permits equalized sealing pressure on the gasket against high pressure encountered in iron globe and angle valve applications.

There are two types of discs supplied in V V globe and angle valves: Metal Disc in most valves is fully guided throughout its travel, minimizing vibration of internal parts and assuring true seating. <u>The disc</u> stem connection is designed to securely hold the disc yet permit swivel action. Disc materials are iron faced with 13% Cr. S.S

Metal Plug Disc/ Needle Type is

<u>conically shaped.</u> This design is universally accepted for rigorous service. Because of the wide seating surfaces, it is not easily harmed by foreign matter or wiredrawing. V V uses S.S in this design.

Seats are screwed in and can be reground or replaced whenever necessary.

Stem material is matched to service recommendations for improved operating dependability and life.

Packing Graphited asbestos

Backseating: Rising stem valves are equipped with backseats. It is recommended that the back seat be used as a means for determining the full open valve postion. For normal operation in the open postion, the stem should backed off so that the back seat is not in contact. This permits the stem packing to assume its intended sealing function and not conceal unsatisfactory stem packing. In the event of stem packing leakage, the back seat can be used to stop stem leakage until circumstances permit a system shut down and time for packing replacement.

Stem packing replacement with the valve under pressure and backseated represents a hazard and should not be undertaken. The hazard is magnified as fluid pressure or temperature increases or when the fluid is toxic.

Handwheels are furnished on all valves Face-To-Face Dimensions of flanged end valves conform to DIN 2545.

Nominal	Flange To Flange	DØ(Dia.)	Raised face	H (Appx.)	T (Thickness)
Size	L		dia. d Ø		
mm	mm	mm	mm	mm	mm
15	130	95	45	180	14
20	150	105	58	180	16
25	160	115	68	185	16
32	180	140	78	200	18
40	200	150	88	250	18
50	230	165	102	270	20
65	290	185	122	340	20
80	310	200	138	380	22
100	350	220	158	450	24
125	400	250	188	530	26
150	480	285	212	600	26

Nominal Size	Flange TO Flange	(Dia.)	Raised face	H (Appx.)	T (Thickness)
	L	DØ	dia. d Ø		
mm	/ mm	mm	mm	mm	mm
15	130	95	45	85	14
20	150	105	58	85	16
25	160	115	68	90	16
32	180	140	78	100	18
40	200	150	88	120	18
50	230	165	102	130	20
65	290	185	122	160	20
80	310	200	138	170	22
100	350	220	158	190	24
125	400	250	188	215	26
150	480	285	212	240	26

250

285

Address:

125

150

V.V. Valves Industrial Corporation. Phone: 01882-252-207 25, Industrial Development Colony, Jalandhar Road, Hoshiarpur.(Pb.)-146001.

400

480

Fax: 500-289 E-Mail: info@vvvalves.in Visit Us At : www.vvvalves.in

215

240

26

26

188

212